Vedic Maths : Nikhilam Navatashcaramam Dashatah
Vedic Maths : Nikhilam Navatashcaramam Dashatah
All from 9 and the last from 10
निखिलं नवतः चरमं दशतः
Any number can be expressed as : N = x + k, Where x is 10 ^ n and k is remainder if you divide N with 10 ^ n. Here N, n, k are integer. k can be negative also.
Here are the examples:
N |
x |
k |
n |
N = (x = 10
^ n) + k |
9 |
10 |
-1 |
1 |
10 ^ 1 - 1 |
7 |
10 |
-3 |
1 |
10 ^ 1 – 3 |
6 |
10 |
-4 |
1 |
10 ^ 1 – 4 |
8 |
10 |
-2 |
1 |
10 ^ 1 – 2 |
5 |
10 |
-5 |
1 |
10 ^ 1 – 5 |
89 |
100 |
-11 |
2 |
10 ^ 2 – 11 |
95 |
100 |
-5 |
2 |
10 ^ 2 – 5 |
88 |
100 |
-12 |
2 |
10 ^ 2 – 12 |
91 |
100 |
-9 |
2 |
10 ^ 2 – 9 |
99 |
100 |
-1 |
2 |
10 ^ 2 – 1 |
97 |
100 |
-3 |
2 |
10 ^ 2 -3 |
888 |
1000 |
-112 |
3 |
10 ^ 3 – 112 |
998 |
1000 |
-2 |
3 |
10 ^ 3 – 2 |
991 |
1000 |
-9 |
3 |
10 ^ 3 – 9 |
997 |
1000 |
-3 |
3 |
10 ^ 3 – 3 |
9999 |
10000 |
-1 |
4 |
10 ^ 4 – 1 |
99979 |
100000 |
-21 |
5 |
10 ^ 5 – 21 |
99999 |
100000 |
-1 |
5 |
10 ^ 5 – 1 |
9999999998 |
10000000000 |
-2 |
10 |
10 ^ 10 – 2 |
16 |
10 |
+6 |
1 |
10 ^ 1 + 6 |
11 |
10 |
+1 |
1 |
10 ^ 1 + 1 |
12 |
10 |
+2 |
1 |
10 ^ 1 + 2 |
13 |
10 |
+3 |
1 |
10 ^ 1 + 3 |
15 |
10 |
+5 |
1 |
10 ^ 1 + 5 |
16 |
10 |
+6 |
1 |
10 ^ 1 + 6 |
17 |
10 |
+7 |
1 |
10 ^ 1 + 7 |
18 |
10 |
+8 |
1 |
10 ^ 1 + 8 |
108 |
100 |
+8 |
2 |
10 ^ 2 + 8 |
111 |
100 |
+11 |
2 |
10 ^ 2 + 11 |
109 |
100 |
+9 |
2 |
10 ^ 2 + 9 |
1005 |
1000 |
+5 |
3 |
10 ^ 3 + 5 |
1009 |
1000 |
+9 |
3 |
10 ^ 3 + 9 |
1016 |
1000 |
+16 |
3 |
10 ^ 3 + 16 |
1006 |
1000 |
+6 |
3 |
10 ^ 3 + 6 |
1026 |
1000 |
+26 |
3 |
10 ^ 3 + 26 |
10006 |
10000 |
+6 |
4 |
10 ^ 4 + 6 |
Now let's have two number A and B where k is a and b respectively
0 comments:
Post a Comment