Vedic Maths : Ekadhikena Purvena
Ekadhikena Purvena
one added to the previous digit
एकाधिकेना पूर्वेण
Now let's assume
B = xp + b |
a |
b |
n |
p |
( x ^ 2 ) ( p ) ( p + 1 ) |
ab |
|
15 |
15 |
5 |
5 |
1 |
1 |
25 |
|
25 |
25 |
5 |
5 |
1 |
2 |
100
* 2 * 3 = 600 |
|
35 |
35 |
5 |
5 |
1 |
3 |
100 * 3 * 4 = 1200 |
25 |
45 |
45 |
5 |
5 |
1 |
4 |
100
* 4 * 5 = 2000 |
25 |
55 |
55 |
5 |
5 |
1 |
5 |
100 * 5 * 6 = 3000 |
25 |
65 |
65 |
5 |
5 |
1 |
6 |
100
* 6 * 7 = 4200 |
25 |
75 |
75 |
5 |
5 |
1 |
7 |
100 * 7 * 8 = 5600 |
25 |
85 |
85 |
5 |
5 |
1 |
8 |
100
* 8 * 9 = 7200 |
25 |
95 |
95 |
5 |
5 |
1 |
9 |
100 * 9 * 10 = 9000 |
25 |
105 |
105 |
5 |
5 |
1 |
10 |
100 * 10 * 11 = 11000 |
25 |
115 |
115 |
5 |
5 |
1 |
11 |
100 * 11 * 12 = 13200 |
25 |
125 |
125 |
5 |
5 |
1 |
12 |
100 * 12 * 13 = 15600 |
25 |
155 |
155 |
5 |
5 |
1 |
15 |
100 * 15 * 16 = 24000 |
25 |
185 |
185 |
5 |
5 |
1 |
18 |
100 * 18 * 19 = 34200 |
25 |
B = xp + b |
a |
b |
n |
p |
(
x ^ 2 ) ( p ) ( p + 1 ) |
ab |
|
37 |
33 |
7 |
3 |
1 |
3 |
21 |
|
79 |
71 |
9 |
1 |
1 |
7 |
100 * 7 * 8 = 5600 |
9 |
87 |
83 |
7 |
3 |
1 |
8 |
100
* 8 * 9 = 7200 |
21 |
96 |
94 |
6 |
4 |
1 |
9 |
100 * 9 * 10 = 9000 |
24 |
97 |
93 |
7 |
3 |
1 |
9 |
100 * 9 * 10 =
9000 |
21 |
98 |
92 |
8 |
2 |
1 |
9 |
100 * 9 * 10 = 9000 |
16 |
99 |
91 |
9 |
1 |
1 |
9 |
100 * 9 * 10 =
9000 |
9 |
114 |
116 |
4 |
6 |
1 |
11 |
100 * 11 * 12 = 13200 |
24 |
191 |
109 |
91 |
9 |
2 |
1 |
10000 * 1 * 2 =
20000 |
819 |
793 |
707 |
93 |
7 |
2 |
7 |
10000 * 7 * 8 = 560000 |
651 |
884 |
816 |
84 |
16 |
2 |
8 |
10000 * 8 * 9 =
720000 |
344 |
0 comments:
Post a Comment