Vedic Maths : Ekadhikena Purvena


Ekadhikena Purvena

one added to the previous digit

एकाधिकेना पूर्वेण

Now let's assume

A = xp + a
B = xp + b

A * B = px ( px + a + b) + ab

Here is one special case. Assume 
x = a + b

px ( px + a + b) + ab
= px ( px + x ) + ab
= (x ^ 2) (p) ( p + 1) + ab

We know, 5 + 5 = 10
Let's take x = 10 , p = 1
Then, here is a special case of making square for any digit ending with 5. 

A = xp + a

B = xp + b

a

b

n

p

( x ^ 2 ) ( p ) ( p + 1 )

ab

15

15

5

5

1

1

100 * 1 * 2 = 200

25

25

25

5

5

1

2

100 * 2 * 3 = 600

25

35

35

5

5

1

3

100 * 3 * 4 = 1200

25

45

45

5

5

1

4

100 * 4 * 5 = 2000

25

55

55

5

5

1

5

100 * 5 * 6 = 3000

25

65

65

5

5

1

6

100 * 6 * 7 = 4200

25

75

75

5

5

1

7

100 * 7 * 8 = 5600

25

85

85

5

5

1

8

100 * 8 * 9 = 7200

25

95

95

5

5

1

9

100 * 9 * 10 = 9000

25

105

105

5

5

1

10

100 * 10 * 11 = 11000

25

115

115

5

5

1

11

100 * 11 * 12 = 13200

25

125

125

5

5

1

12

100 * 12 * 13 = 15600

25

155

155

5

5

1

15

100 * 15 * 16 = 24000

25

185

185

5

5

1

18

100 * 18 * 19 = 34200

25


Here are few more examples

A = xp + a

B = xp + b

a

b

n

p

( x ^ 2 ) ( p ) ( p + 1 )

ab

37

33

7

3

1

3

100 * 3 * 4 = 1200

21

79

71

9

1

1

7

100 * 7 * 8 = 5600

9

87

83

7

3

1

8

100 * 8 * 9 = 7200

21

96

94

6

4

1

9

100 * 9 * 10 = 9000

24

97

93

7

3

1

9

100 * 9 * 10 = 9000

21

98

92

8

2

1

9

100 * 9 * 10 = 9000

16

99

91

9

1

1

9

100 * 9 * 10 = 9000

9

114

116

4

6

1

11

100 * 11 * 12 = 13200

24

191

109

91

9

2

1

10000 * 1 * 2 = 20000

819

793

707

93

7

2

7

10000 * 7 * 8 = 560000

651

884

816

84

16

2

8

10000 * 8 * 9 = 720000

344


0 comments:

Post a Comment