Vedic Maths: Anurupyena
Anurupyena
Proportionality
आनुरूप्येण
Any number can be expressed as : N = x + k, Where x is p * (10 ^ n) and k is remainder if you divide N with 10 ^ n. Here N, n, k are integer. k can be negative also. p is decimal number or integer number. p > 1 or p < 1 both are possible.
Here are the examples:
x |
k |
x = p * (10 ^ n) |
p |
n |
N = (x = p * (10 ^ n) ) + k |
|
41 |
50 |
-9 |
50
= 0.5 * 100 |
0.5 |
2 |
0.5 * ( 10 ^ 2 ) - 9 |
41 |
40 |
+1 |
40 = 4 * 10 |
4 |
1 |
4
* ( 10 ^ 1 ) + 1 |
49 |
50
|
-1 |
50
= 0.5 * 100 |
0.5 |
2 |
0.5 * ( 10 ^ 2 ) – 1 |
249 |
250 |
-1 |
250 = 0.25 *
1000 |
0.25 |
3 |
0.25
* ( 10 ^ 3 ) – 1 |
245 |
250 |
-5 |
250
= 0.25 * 1000 |
0.25 |
3 |
0.25 * ( 10 ^ 3 ) – 5 |
229 |
250 |
-21 |
250
= 0.25 * 1000 |
0.25 |
3 |
0.25
* ( 10 ^ 3) - 21 |
230 |
250 |
-30 |
250 = 0.25 * 1000 |
0.25 |
3 |
0.25 * ( 10 ^ 3) - 30 |
3998 |
5000 |
-1002 |
5000 = 0.5 *
10000 |
0.5 |
4 |
0.5
* ( 10 ^ 4 ) – 1002 |
4998 |
5000 |
-2 |
5000 = 0.5 * 10000 |
0.5 |
4 |
0.5 * ( 10 ^ 4 ) – 2 |
532 |
500 |
+32 |
500
= 5 * 100 |
5 |
2 |
5
* ( 10 ^ 2 ) + 32 |
472 |
500 |
-28 |
500 = 5 * 100 |
5 |
2 |
5 * ( 10 ^ 2 ) – 28 |
0 comments:
Post a Comment