5G NR : Part 1


5G is about IoT. In fact in 4G also, IoT related standardization was started with NB-IoT. 

Use Cases

  1. AR/VR
  2. Autonomous transportation (car)
  3. Reliable access to remote health-care
  4. Public safety
  5. Smarter Agriculture
  6. Efficient use of energy/utilities
  7. Autonomous manufacturing
  8. Sustainable cities and infrastructure 
  9. Digitized logistics and retails
Verticals

Avalanche of traffic volumeMassive connected devicesDiversified use cases
Autonomous car
Connectivity Req
Peak data rate 10Gbps
Min data rate 50 Mbps
High user mobility
Brodband access in dense area
Connectivity Req
Low cost
Low energy
Low packet size
Connectivity Req
Ultra high reliability
Ultra low latency
Use cases
Ultra large volume transfer
Always connected in crowd
AR / VR
Use Cases
IoT
IIoT
Use cases
V2V communication
Driver-less car
Remote surgery
Smart grid
Manufacturing Robot

Market Segments

1. Enhanced Mobile Broadband (eMBB)
2. Massive Machine Type Communications (eMTC)
3. Ultra Reliable and Low Latency Communications (URLLC)

Key KPIs

1. Peak data rate
2. Spectrum efficiency
3. Mobility
4. Latency
5. Connection diversity
6. Network energy efficiency
7. Area traffic capacity

5G standard bodies

1. 3GPP (ITU-R) : (IMT 2020)
2. EU - (METIS - 2020) 
3.1 Japan 2020 and beyond
3.2 Korea 5G Forum
3.3 MOST - China

5G Evolution

1. IMT-Advanced
2. Enhanced IMT-Advanced
3. 5G RAN

Peak data rate
Mobility
Capacity (/km square)
Number of connected devices / cell
User plane latency
Energy Saving (energy / bit)

5G Standards

3GPP 5G NR Specification
Verizon 5G Specification
Phy channels and modulation38.211 : NRTS V5G.211
Multiplexing and channel coding38.212 : NRTS V5G.212
Physical layer procedures38.213 : NRTS V5G.213
URLhttp://www.3gpp.org/DynaReport/38-series.htmhttp://www.5gtf.net/


pre 5G standard - https://m.corp.kt.com/eng/html/biz/services/sig.html


3GPP Important Standards

TS 38.211 NR; Physical channels and modulation  
TS 38.212 NR; Multiplexing and channel coding  
TS 38.213 NR; Physical layer procedures for control  
TS 38.214 NR; Physical layer procedures for data  
TS 38.215 NR; Physical layer measurements  
TS 38.300 NR; Overall description; Stage-2  
TS 38.321 NR; Medium Access Control (MAC) protocol specification  
TS 38.322 NR; Radio Link Control (RLC) protocol specification  
TS 38.323 NR; Packet Data Convergence Protocol (PDCP) specification  
TS 38.331 NR; Radio Resource Control (RRC); Protocol specification
TR 38.801 Study on new radio access technology: Radio access architecture and interfaces
TR 38.912 Study on new radio access technology  

TR 38.913 Study on scenarios and requirements for next generation access technologies
TS 23.501 System Architecture for the 5G System

NSA

gNB to EPC

SA

gNB to 5G CN
For greenfield deployment

4G and 5G comparison 

4G
5G
eNBgNB
Key Functions:
1. Intercell Radio Resource Management
2. Resouce Block Control 
3. Radio Admission Control
4. Connection Mobility Control
5. Dynamic Resource Allocation (Scheduler)
6. Measurement Configuration and Provisioning
X2 InterfaceXn Interface
MMEAMF : Access & Mobility Management F
Key Functions:
1. NAS Security 
2. Idle State Mobility Handling
S-GWUPF : User Plane F
Key Functions:
1. Mobility Anchroing 
2. PDU Handling
P-GWSMF : Session Management F
Key Functions:
1. UE IP Address Allocation 
2. PDU Session Control.
S1-CNG-C
S1-UNG-U
EPC5G CN = NGC

U-Plane

New protocol SDAP over existing PDCP

Deployment Models


ModelFyBW
Indoor Hotspot30 GHzUpto 1 GHz
Rural700 MHzUpto 20 MHz
High Speed4 GHzUpto 200 MHz
Urban + Massive Connections700 MHz OR
Optionally 2100 MHz

Reference : TR 38.913 Study on scenarios and requirements for next generation access technologies

mmWave frequency is > 30 GHz

5G New Technology

1. mmWave frequency is > 30 GHz
2. Massive MIMO > 8 x 8 MIMO
3. Beam Management
4. LDPC coding (for U-Plane) and Polar coding (for C-Plane) 
5. AS Layer
6. UL Waveform
7. Subframe structure
8. HARQ
9. SDN
10. NFV
11. Grant-free UL for IoT

Numerologies

1 frame = 10 subframe
1 subframe's slot = f (n)
1 slot = 14 symbols

So 1 frame's slot = 10 x f(n)
So 1 subframe's symbols = 14 x f(n)
So 1 frame's symbol = 10 x 14 x f(n) = 140 x f(n)


Numerology
Sub carrier BW (kHz)
Delta F = 2 ** n x 15
12 x Delta F
Remark
Slot / subframe
Slot / frame
Symbol / subframe
Symbol / frame
0
15
180 kHz
Below 1GHz
1 GHz to 6 GHz
1
10
14
140
1
30
360 kHz
Below 1GHz
1 GHz to 6 GHz
2
20
28
280
2
60
729 kHz
1 GHz to 6 GHz
24 GHz to 52.6 GHz
4
40
56
560
3
120
1.44 MHz
24 GHz to 52.6 GHz
8
80
112
1120
4
240
2.88 MHz
16
160
224
2240
5
380
5.76 MHz
32
320
448
4480


Slot Format

TDD or FDD depends upon

0 : All 14 Symbols are D
1 : All 14 Symbols are U
2 : X
3 : 13 D + 1 X
4:  12 D + 2 X
5 : 11 D + 3 X

D = Downlink
U = Uplink
X = Flexible

To be continued...

0 comments:

Post a Comment